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Aside

It is a great honor and pleasure for me to join in celebrating the hundredth 
anniversary of the birth of Niels Bohr. I had the good fortune of spending the spring 
of 1958 in the Summer House on Blegdamsvej. There I met many exciting physicists 
and was moved by the tradition of openness and enthusiasm for science which 
pervaded the Institute. On several occasions Niels Bohr invited me to discuss with 
him the theory of superconductivity. We were joined by Aage Bohr and Léon 
Rosenfeld. The discussions focussed on Bohr’s ideas concerning superconductivity, 
some of which trace back to the late 1920s. We also discussed the theory just 
proposed by Bardeen, Cooper and myself. These discussions made a very deep 
impression on me and remain one of the high points of my life.

In addition to benefiting from the science and hospitality at Blegdamsvej, I 
learned of Weisskopf’s theorem, and soon provided another proof of its validity by 
marrying a lovely Danish girl who continues to provide ties to Denmark. It is in this 
sense of extended family that I join with you and the Bohr family in this joyful 
celebration.
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1. Introduction

From the early days of quantum theory, a fundamental principle of measurement 
theory has been the indivisibility of an elementary particle. For example, consider 
the traditional Stern-Gerlach experiment illustrated in fig. 1, in which a particle of 
spin 5 = 5 is prepared in an eigenstate of øx. The particle passes through a magnetic 
field gradient along z, such that the incoming wave splits into two separated beams, 
+ and —, which pass through slits in a shutter and strike a screen which detects the 
beams.

If the wavefunction ip(r, t) describes a classical field, one would expect one half 
a particle to pass through each slit, each time a particle is projected toward the 
shutter. On the contrary, quantum theory and experiment show that either:

(1) a full particle is observed to pass through the + slit with charge - e, and no 
particle passes through the - slit, or

(2) a full particle passes the — slit and not through the + slit.
The probability for observations (1) and (2) are both Thus, an elementary particle 
cannot be split into two half particles.

A related question is the following: can stable particles (excitations) of sharp 
fractional charge exist in systems composed solely of particles of integer charge? 
Several clarifications are in order. Firstly, by sharp we mean that every time the 
charge of the particle is accurately measured, the same fractional result will occur, 
rather than a distribution of values, the average of which is fractional. Secondly, 
while vacuum polarization effects renormalize all charge, these effects cancel out in 
the ratio of the dressed fractional charge and the dressed primative charge from 
which the system is constructed.

The first step in this story occurred in 1976 when R. Jackiw and C. Rebbi [1] 
discovered that if a spinless Dirac field is coupled to a nonlinear scalar background 
field which supports kink-like solutions in one space dimension, the negative energy 
sea in the vicinity of the kink is depleted by one half a fermion. Also, a zero-energy 
fermion state (zero mode) was found to be bound to the kink, which, if filled, leads 
to a total excess of one half a fermion associated with the kink.

Independently, W.P. Su, A.J. Heeger and the author [2], studying quasi one-di
mensional conductors, discovered that soliton excitations can occur whose charge
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Fig. 1. Stern-Gerlach experiment.
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per spin is ±e/2, where — e is the electronic charge in the medium. Since two spin 
directions are equally populated in these systems, the soliton carries a total charge 
Q = —e, but a spin 5 = 0. This surprising result appears to violate Kramer’s 
theorem relating the electron number and the allowed spin value, i.e. one electron 
( — e) must correspond to spin Fundamentally, these peculiar effects arise from 
the same physical effect: vacuum charge flows at domain walls in quantized 
amounts in systems having discretely degenerate vacua. The sharp quantization of 
charge is a consequence of this discrete symmetry breaking. In essence, the wave
functions of the negative-energy (occupied) fermion states are distorted by the Bose 
field without change of the fermion occupation numbers [3].

A third example of fractional charge arises in the fractional quantum Hall effect. 
In this case, electrons confined to two space dimensions are subject to a strong 
magnetic field perpendicular to the plane. While semiclassical theory predicts the 
transverse conductivity axv to be a linear function of the electron density v, 
experiments by von Klitzing et al. [4] showed that a exhibits plateaus at integer 
values of r, corresponding to filled Landau levels. Steps at fractional v were 
observed by Tsui et al. [5]. To account for the latter result, Laughlin [6] proposed a 
fluid-state theory possessing fractionally charged quasi particles. Recently, an 
alternative theory based on a Wigner-crystal approach has been advanced by 
Kivelson et al. [7] and this also exhibits fractionally charged excitations. In these 
theories, as in those mentioned above, only vacuum flow of current is involved in 
the fractional charge. However, the charge quantization comes about from a 
somewhat different mechanism in the Hall effect, namely local energy stabilization 
near the core of the excitation rather than discretely degenerate vacua extending 
over large regions of space (nonlocal energy stabilization).

Below, we briefly discuss these examples of “charge splitting without violating 
quantum mechanics”.

2. A classical example

Consider the infinite line with the integers marked off as in fig. 2(top). We place 
particles, each of charge q, on the odd sites starting at — oo, leaving the even sites 
vacant. Having filled a given site, say number 1, we make an error and place the 
next particle at 2 instead of 3. We continue placing charges on every other site, i.e. 
the even sites to Too. Note that we have made two domains: — oo to 1 with odd 
sites occupied, even sites empty (termed the A phase); and 2 to + oo with the 
reverse occupancy (termed the B phase). A domain wall separates the two phases 
and is located at the midpoint x = | between the two adjacent occupied sites.

Suppose we move the particle initially located on site 2 to site 3, as shown in fig. 
2(bottom). Notice that the midpoint between the two adjacent occupied sites has 
moved to x' = | + 2, that is, the domain wall moves two units even though we 
moved the particle only one unit I L et us now determine the effective charge Q 
associated with the domain wall, i.e. the charge which will be observed in long-wave
length experiments. We do this by equating the charge in the electric dipole moment 
A p of the system calculated in two ways, namely through the particle motion
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Fig. 2. A classical example of a fractionally charged excitation, illustrating the difference between the 
particle and domain-wall interpretation of configuration changes.

ç-( + l), and through the domain wall motion Q-( + 2). Since Ap must be inde
pendent of how we describe the system we have q = 2Q or Q = q/2. Thus from 
integer charges q, we have discovered an “excitation” whose charge Q is fractional, 
Q/q= 2- While this example appears to be trivial, it illustrates one mechanism for 
the occurrence of fractional charge, namely domain-wall or more generally topologi
cal solitons separating degenerate ground states which have different negative-en
ergy fermion wavefunctions. The charge conjugate wall with Q/q= — | is given by 
leaving two vacant spaces rather than no spaces between particles at the wall.

Clearly, we could generalize the model to charge Q/q = |, by placing charges on 
every third site, with one rather than two spaces between particles at the wall, etc. 
[8]. Below we discuss fractionalization in quantum systems.

3. Solitons and chain conductors

The simplest example of charge fractionalization in a quantum system occurs in the 
linear polymer [9] trans-polyacetylene (CH)X, illustrated in fig. 3. While each carbon 
has four valence electrons, three of these are dynamically mute, being involved in 
strong bonds with its three neighboring atoms (two C’s and one H). The remaining 
electron is in a p2 orbital and is free to wander along the chain to form a 
one-dimensional metal. In band language, this p, band is half filled, because of two 
spin states, and should lead to large electrical conductivity. In fact, precisely the 
reverse is true, as first discussed by R.E. Peierls [10], He showed that any one-di
mensional Fermi gas, when coupled to lattice distortions or phonons, leads to a 
spontaneous symmetry-breaking. In this case the coupling breaks the combined 
symmetry operation of translation by one unit along x, and tt rotation about x. The 
broken-symmetry state has a periodicity of 2 units along x and corresponds to a 
modulation of carbon-carbon bond lengths, long, short, long, short,... .In practice 
these bond-length changes are very small, less than 5% of the unstretched bond; 
however, they have a dramatic effect on the electron spectrum, opening up a gap of 
2 A = 1.4 eV at the Fermi surface, converting the undistorted metal to a large-gap



Strange Quantum Numbers 63

Fig. 3. Trans-polyacetylene (CH)X in its two degenerate ground states.

semiconductor. The fact that the gap opens at precisely the Fermi surface is no 
accident since the system energy would increase were it elsewhere in momentum 
space. Chemists term the Peierls instability dimerization or bond alternation.

To obtain a more quantitative understanding of these effects consider the model 
Hamiltonian [2] describing the coupled electron-phonon system in trans (CH)X:

L/„(C„++1,iC„ + h e.) + E Í + f («„+1 - «J2}, (1)

where C„s creates a p, electron of spin s on site n. un is the displacement of the nth 
(CH) group along the jc-axis, with the momentum TI„ conjugate to un. The 
electronic hopping matrix element tn is modulated by the phonons and is well 
approximated by

C, = ¿o + «(X “ ^n + i), (2)

where t0 generates the bare-electron band structure and a is the electron-phonon 
coupling constant. In field theoretic terms, H describes a Fermi field linearly 
coupled (a) to a Bose field on a lattice. The finite lattice spacing provides a natural 
cutoff for the theory.

Despite the simplicity of H, its ground state and excitations are known only 
approximately at present. Fortunately, typical electron frequencies are large com
pared to phonon frequencies so that the electrons can be integrated out within the 
adiabatic approximation (one-loop level) to obtain an effective potential Veff for the 
phonon field. It is convenient to introduce the staggered Bose field

^=(-1)"«^ (3)

to remove the rapid spacial oscillations of un which occur near the minimum-energy
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Fig. 4. The effective potential Feff as a function of the amplitude of the staggered displacement (Bose 
field) <¡>, for spacially uniform. The peak at </> = 0 exhibits the Peierls instability with degenerate vacua 

at the broken-symmetry values ± (¡>0.

configuration. For the special case = <f>, i.e. perfect alternating bond length with 
amplitude </>, Keff is illustrated in fig. 4. The negative curvature of Keff at 9 = 0 
reflects the Peierls instability, while minima at ± <>0 represent the two-fold degener
ate broken-symmetry vacua. The physical origin of this dynamical symmetry break
ing is clear. Nonzero (</>) leads to a gap 2Ú (or mass m = A) in the electron 
spectrum, where A = 4a(</>), as shown in fig. 5. The energies of the occupied states 
are lowered by the existence of the gap, leading to the decrease of Feff for small <f>. 
For large </>, the lattice-strain effects represented by the positive K term in //. 
dominate the interaction terms. Thus, within the harmonic fluctuation approxima
tion about each ground state, the system appears to be a conventional semiconduc
tor.

However, a closer look reveals the system to be highly unconventional, in that in 
addition to phonons, the stable excitations are not electrons and holes as in 
conventional semiconductors but topological solitons with peculiar charge-spin 
relations. To understand how this comes about, consider the displacement pattern 
shown in fig. 6 in which a domain wall is located at site 1 (fig. 6a). If the 
displacements were large, a pair of p, electrons ( Î J, ) would be localized on each 
short bond and none would be localized on long bonds, just as in the classical 
model. When the electron pair localized on the bond joining 1 and 2 moves one unit

/
77 
a

(b)
Fig. 5. The tt electronic structure: (a) for (<>) = 0, and (b) for {$) — + </>0. The gap 24 arises from and 

drives the spontaneous symmetry-breaking by negative energy states, being lowered when (<j>) V 0.
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Fig. 6. The motion of a kink in trans-(CH)x is illustrated in analogy with the classical example shown in 
fig. 2. In practice, the kink width is on the order of fourteen lattice spacings rather than two spacings as 
shown, reflecting electrons being in scattering states rather than in the localized states used for this 

schematic illustration.

to the bond joining 2 and 3 as in fig. 6b, the domain wall moves from site 1 to site 3, 
i.e. two units. Therefore, we expect the effective charge of the kink to be — e/2 per 
spin direction, or a total charge of — e.

Another way of understanding this result is illustrated in fig. 7 in which N (even) 
(CH) groups form a ring. Initially the system is in the A phase, shown in panel (a) 
with <j) plotted radially. The spectrum has N/2 levels in the positive and N/2 levels 
in the negative energy regions. In panel (/?), <j> is distorted to form a soliton S and 
an antisoliton S. If S and S are widely separated, the electronic spectrum exhibits 
two zero-energy states, each split symmetrically from the positive and negative 
energy continua. Furthermore, since the spectral sum rule for the local density of

//////Z/Zn/2 ZZZZZZZZZn/2-i

(a) (b)

Fig. 7. A trans-(CH)x chain having N (CH) groups in a ring configuration. In (a) the system is in the A 
vacuum and in (b) the system is distorted to have a soliton S and a widely spaced antisoliton S. While the 
positive and negative continua each have N/2 states in (a), two states near zero-energy appear in (b), one 
localized near S and the other near S. Since the total number of states is conserved, the positive and 
negative energy continua are each depleted by one state when S and S are created. The essential point is 
that the state depletion (and hence charge depletion per spin) of the negative-energy states is | from the 

vicinity of S and | from S. This is the origin of the fractional charge of these objects.
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A n/2 -i

n/2 - i

Fig. 8. A polaron P or bag state leading to two split off states in the gap. Note that P can be interpreted 
as a bound SS pair (see fig. 7).

states pnn(E) requires

/oo
p„„(£)d£ = l, (4)

- Cd 

we see that spectral weight for the zero-mode wavefunction for S (or S) is stolen 
from the immediate vicinity of S (or S). This depletion occurs symmetrically from 
the + and — energy continua since H is invariant under charge conjugation. Thus, 
the negative sea is depleted by a state per spin near S and the same holds true 
near S. Clearly, this occurs by <>„ acting as a scattering potential which distorts or 
phase shifts the continuum states near S and S.

In addition to soliton or kink states, trans-(CH)x supports polaron, P, or bag 
states [11,12]. In fig. 8, <j>n is shown having a dip which splits off two states, at ±e, 
from the continuum. Only when the total number of electrons in ± e is either 1 or 3 
is the bag stable. Three electrons in ±c corresponds to an electron polaron which 
has a charge — e (since vacuum depletion leads to a charge + 2e when both +e are 
empty) while 1 electron in corresponds to a hole polaron, of charge + e. The 
charge and spin relations are summarized in table 1.

The doubly charged polarons P2 + and P2_ decay rapidly to S + S + or S~S~. Thus, 
P is essentially a strongly bound SS pair.

Table 1
Charge (Q) and spin (s) relations in a conventional semiconductor.

Object Symbol Q s

Electron e_ — e 1
2

Hole e+ 4- e 1
2

(CH)r soliton S~ — e 0
s° 0 1

2

s+ 4- e 0
Polaron p- — e 1

2

p+ 4- e 1
2
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Detailed calculations [2] predict that for trans-(CH)x the soliton width 2£ is 
approximately 14 lattice sites or about 18 A, and the soliton rest energy [13] is 
Es = (2/ir)A, while the soliton mass M& is approximately six electron mass units. As 
discussed below, many experiments confirm these general results [14], although 
electron-electron Coulomb interactions, quantum fluctuations of <£, etc., lead to 
some quantitative changes [9,15,16].

4. A relativistic model

Closely related to the (CH)X model is the relativistic model studied by Jackiw and 
Rebbi [1]. They considered a neutral scalar <p4 field weakly coupled to a spinless 
Dirac field in one space dimension,

H = l dx^ + (ap + ßg<)>)4 + |<j>2 + j + </>)}, (5)

where

(6)

As shown in fig. 9, a kink occurs when moves from the -<£0 to the </>0 vacuum. 
Treating <j> as a background field, Jackiw and Rebbi found a zero mode xp0 which if 
empty leads to a fermion number n f = — | associated with the kink, while nf - + 1 
if is occupied. Again, this is due to the flow of vacuum charge as negative-energy 
states distort at fixed occupation in response to the distortion of ^>(x).

Fig. 9. The potential K(^>) for a <j>4 relativistic model. For (<¡>) = ± <¡>0, a mass appears in the fermion 
spectrum. When a kink is introduced a zero mode occurs and the kink is fractionally charged. Precisely 

the same physical origin of fractional charge occurs here as in the (CH) x case.
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5. Sharpness of fractional charge

The question has been raised if fractional charge is a sharp quantum observable or if 
only the expected value of Q is fractional. This has been answered by direct 
calculation [17] as follows. When one defines the charge of an extended object, it is 
the long-wavelength limit Q( of the charge form-factor which is relevant. Thus, if 
p(x) is the charge-density operator, we have

Qf= f/W p(x) dx, (7)

where for convenience we choose a Gaussian sampling function

/(x) = e x2/l2 (8)

and let L-*  co for an infinite system. One can prove that the mean square 
fluctuations of Q{ about its mean value = Qs vanish exponentially as
L -> oo,

<s I (ßf - ßs)2 I s> - <0 I 2S2 |0> -> (9)

where £ is the half-width of the soliton. Note that the fluctuations of the vacuum are 
subtracted since these are unrelated to soliton fluctuations. In any event the vacuum 
fluctuations also vanish as the sampling size L -> co. Thus, for smooth sampling of 
the charge, a sharp fractional charge occurs.

6. The experimental situation

While fractional charge of isolated objects (as opposed to bound quarks) has not 
been observed in particle physics, strong evidence exists that soliton excitations, as 
discussed above, do exist in quasi one-dimensional conductors. Heeger et al. 
observed the rapid transport of spin without charge in NMR and ESR experiments. 
For example, electron spin resonance experiments on prestine trans-(CH)Y show 
that objects with spin | are moving rapidly, near the speed of sound, rather than 
being localized on a given (CH) group. The solitons’ motion is reflected as a 
motional narrowing of the spin resonance line width. At liquid helium temperatures, 
the width grows since the soliton presumably comes to rest, however, a residual 
motional narrowing occurs. This residual width is a direct measurement of the 
delocalization of the zero mode wavefunction ip0 over the size 2£~ 14 A of the 
soliton.

In addition to showing S° and S° have spin 4, Heeger et al. showed that S*  and 
S*  have spin 0, in agreement with table 1. Finally, polarons P± have been observed 
to have spin The charged soliton and the polarons are created by doping the



Strange Quantum Numbers 69

material with donor or acceptor impurities such as Na or Cl, etc., with one soliton 
being created per impurity atom.

Another elegant method of creating solitons in trans-fCH)*  is by photoproduc
tion of SS pairs. A photon of energy > 2á is absorbed creating a bare electron-hole 
pair across the gap. These excitations are highly unstable and decay in one phonon 
period - 10“13 s into an SS pair, some fraction of which separates near the speed of 
sound. Experiments [14] suggest that only charged solitons S*̂  are formed in this 
way. Optical absorption of these photoproduced S± and S+ shows transitions 
between the top of the negative energy sea and the zero mode (called the gap state) 
or from this state to the positive energy sea. There is also evidence of direct SS 
production below the 2Ú threshold. In addition, the shape-oscillation mode of the 
soliton (in essence £ oscillation) has been observed.

Another intriguing experiment by Dalton et al. [18] is electron nuclear double 
resonance (ENDOR) on prestine trans-(CH)x, which probes the spacial distribution 
of spin in a neutral soliton. Their results are consistent with the soliton spin per site 
oscillating with a period of two lattice sites, as predicted by theory [19]. The reverse 
(down) spin between up-spin sites is due to Coulomb exchange effects. Remarkably, 
as the soliton moves, the up-spin sites remain up-spin and vice versa so that this 
distinction between up and down sites (or down and up sites for S() with spin up) is 
preserved, precisely as predicted by theory.

There are many other experiments supporting the soliton model of (CH)X, 
including transport properties, luminescence and photoconductivity, etc. [14] Fi
nally, if the degeneracy of the minima of Feff at ±<j>0 is split, one would predict a 
confinement potential Vc(x) = — c|x| binding the SS pair. This is observed, for 
example, in cis-(CH)x where the A and B phases are not degenerate by symmetry, 
the chemical structure being square wave rather than zig zag as in the trans material.

7. Quantum Hall effect

A second mechanism leading to quantization of non-integer charge occurs in the 
so-called fractional quantum Hall effect. While the Hall effect historically was 
observed in three-dimensional materials, such as the semiconductors Ge and Si, 
recent interest focussed on systems such as MOSFET and heterojunction semicon
ductor devices, in which a two-dimensional (x, y) electron gas exists on a surface or 
at an interface. A very strong magnetic field Bo — 105 Oe is applied along z, as 
sketched in fig. 10. If an electric current jx is made to flow along x, an electric 
(Hall) field Ey proportional to jx is observed.

7.7. One-electron theory

The classical theory of the Hall effect is extremely simple. Each electron is acted on 
by the Lorentz force

V X BF= -e E + c (10)
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Fig. 10. Configuration for the two-dimensional Hall effect.

which vanishes in steady state. Thus, vx = cEv/B0 and the current is given by

(11)

where ctx1. is the Hall conductivity. For fixed Bo, oxy is linear in the two-dimen
sional electron density n.

von Klitzing, Dorda and Pepper [4] discovered that for devices having extremely 
long electron relaxation times t, so that wct » 1, with <¿c = eB/mc being the 
cyclotron frequency, axy is not a linear function of n but has plateaus at “integer” 
values of n, corresponding to the complete filling of a Landau level, i.e. n = vB0/(pQ 
where v = 1, 2, 3 ... and <p0 = he/e is Dirac’s flux quantum. Since Planck’s constant 
appears, at least a semiclassical theory is required. If one neglects electron-electron 
interactions, the system is described by electrons independently filling the Landau 
levels £)=(/ + |)Awc, / = 0, 1, 2... . Using the classical expression for with n 
given by pB0/<¡>0 for general v, one finds

(12)

Therefore oxy is predicted to directly measure e2/h. At present the relative error in 
determining e2/h by this method is on the order of 10~7, comparable with the 
Josephson-effect measurement of this constant.

What produces the plateaus at r = 1, 2, 3... ? It is thought that for v near an 
integer, the extra electrons (or holes) about integer occupation are localized in 
bound states, presumably due to crystal defects. Only when all of the localized trap 
states are full, do the extra electrons add to the current. Remarkably, sum rules 
show that the depletion of the continuum states to form bound states does not 
reduce the Hall conductivity for v — integer [20].

Following the discovery of the integer effect, Tsui, Stormer and Gossard [5] 
discovered plateaus at fractional v=p/q, where q is an odd integer and p is 
integer. These experiments require even greater care than integer v since the effects 
are quite subtle. While the gaps between one-electron Landau levels give a natural 
basis for accounting for the integer effect, it is clear that electron-electron interac
tions must be involved in the fractional v effect.
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7.2. Liquid-phase theory

Soon after the discovery of Tsui et al., Laughlin [6] proposed a trial wavefunction 
for the interacting electron gas in the form of a Jastrow-type state, i.e. a product of 
pair correlation factors ftJ,

where ZÆ = + ij^ is the complex coordinate of electron k, and /0 is the magnetic
length trll = <p0/B0. For /zwc » e2/d0 (e = the dielectric constant), only the lowest 
Landau level 1=0 need be included in the many-body basis states. It is seen that % 
must be a polynomial in Zy. Laughlin chose ftj = (Zt- Zj)m, where m = 1, 3, 5 ..., 
so that % is properly antisymmetric. For m non integer, % cannot describe the 
system since higher Landau levels are admixed. The density is v = 1 /m for the 
Laughlin state.

To accommodate extra electrons or holes near v = 1 /m, Laughlin proposed 
including a factor Fl^Zy — Zo) for a quasi-particle centered at Zo. This factor acts 
as a raising operator for the angular momentum of each particle about Zo. One 
finds that the charge of the quasi-particle (hole in this case) is Q = ve = e/m = e, 

...,while a conjugate factor acting on % produces quasi-particles of 
negative fractional charge. Note that the quantization of charge arising in this case 
is not due to the discrete degeneracy of the ground state, but rather from the local 
quantization implied by the restriction of remaining in the lowest Landau level 
imposed by large Bo. The raising of all angular momenta about Zo by one unit 
depletes the region surrounding Zo by precisely v electrons. Therefore, since no 
charge accumulation occurs away from the vicinity of Zo, we see Q = e/m. 
However, Laughlin has argued that his state describes an incompressible fluid so 
that the charge ve swept out from the origin cannot be screened by polarization 
effects away from Zo. Spin is not considered here since the spin Zeeman energy is 
also assumed large compared to e2/e/0. Another way of phrasing the issue is that 
the factor ny (Zy. - Zo) represents a singular gauge transformation which arises 
from a conceptual point magnetic vortex tube threading the plane at Zo. Only if the 
flux </> of the line is a multiple of (j>0 does the state remain in the lowest Landau level 
and has low energy.

Finally, we note that higher-order plateaus, v=p/q where p = 2,... have been 
interpreted by Haldane [21] and by Halperin [22] as arising from Laughlin con
densation of quasi-particles from a v = 1 /m state to form a new state which in turn 
has quasi-particles which condense, etc. This forms a hierarchy of p/q charged 
particles.

7.3. Quasi-particle statistics

To work with fractionally charged quasi-particles, one must know their statistic. 
Instinctively, since electrons gain a phase of it on interchange, it seems reasonable



72 J. R. Schrieffer

that two quasi-particles i and j of charge ve would gain a phase vtt on interchange 
in two dimensions, i.e.

*(z, j) = e1’7" *(;,  /). (14)

That this is true in two dimensions was proved by Arovas, Wilczek and the author 
[23] using the extended adiabatic theorem [24,25]. Namely, as one adiabatically 
interchanges 1 and 2, the wavefunction picks up a phase y(?) given by

it = <Ÿ(r)|4>(r)>. (15)

By using Laughlin’s state for two quasi-particles i and j one finds the result given in 
eq- (14).

The free energy of a non-interacting gas of such quasi-particles is peculiar [26].

7.4. Crystalline-phase theory

While the liquid-state theory of Laughlin along with the Haldane-Halperin hierarchy 
give an explanation of much of the data on the fractional quantum Hall effect, a 
difficulty occurs. One can prove that the correct state at low electron density, v <sz 1 
is a Wigner crystal in which particles are located on a triangular lattice in two 
dimensions. An important question is at what density vc do the crystal and liquid 
phases have equal energy? Starting with the Wigner crystal state, Maki and Zotos 
[27] calculated the vibration spectrum and found the crystal is differentially stable 
except in the range 0.45 <v< 0.55. Since the Laughlin description of the liquid only 
holds near j,..., the differential instability of the liquid has not been 
calculated. Presumably, the lower boundary is between rc = 0.2 and 0.45 although 
this question remains open at present.

Recently, Kivelson, Kallin, Arovas and the author (KKAS) [7] proposed an 
alternative theory of the fractional Hall effect in terms of a collective ring-exchange 
mechanism starting from the crystalline phase. Using a path-integral formulation, 
they find important processes are those in which a ring having L electrons 
collectively tunnels to a new configuration, such that + Because flux is
enclosed by the tunneling current, each ring enters with a phase given by </>/</>0, 
where </> is the flux enclosed by the area A of the ring. For v = p/q with p and q 
integer, these phases are such that exchange energy of large loops on average add in 
phase. However, for other values of v, the crystal and magnetic lattices are 
incommensurate and the exchange energy of large rings is random in sign and 
cancels. Thus, the ground state energy E0(v) is found to exhibit cusps at v¡ = p/q 
with the cusp-like part of Eo varying as |S^|ln|Sr| near each cusp, where 
8v = v — Vj. The strength of the cusp is largest for p = 1 and q small, i.e. p= j, 
1 5,....

To determine E{}(v) one writes

E0(v) = ~ In Z, Z = Tr e~ßH,
ß —» OC up

(16)
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where the trace is over many-body states constructed solely from the lowest Landau 
level. The effective Hamiltonian is given by

where Po projects onto the lowest Landau level. Roughly, V is given by

“ e[|Z,-Z7|2 + V]1/2’

where Ä is the extent of the one-electron orbitals in the z direction.
The so-called coherent states | R) form a convenient one-electron basis set for 

taking the trace in eq. (16). These states have wavefunctions

<r|/?> = -=L=- expl-77llr-/?l2 + T7^(rX Æ)‘-0’ (19)
^tt/2 ( 4/2 2/2 )

and satisfy the completeness relation

(20)

By writing with e = ß/M and inserting between each factor of
e~tH the product of projectors Po from eq. (20) for all particles, one finds, as 
M—> oo, a path-integral representation of Z:

Nn^Ä/(T) (21)
& J

with the boundary conditions 7?y(0) = 7?^ >(/?). Here ¿P permutes the particle 
coordinates. The action S’ is given by

SlKHi/dri-if (Ä,XÄ,)-z + £K.(«r«A (22)
0 \ 7=1 /*/  /

where Vc is the effective Coulomb interaction eq. (18) in the coherent state basis.
To evaluate Z we consider the saddle point (semiclassical) approximation in 

which one continues JÇ(t) and kj(r) to complex values, where 7?y = (2Ç, 1Ç). One 
finds those paths {7?/c(t)} which minimize the classical action S. These extremal 
paths satisfy

áXj dVj dTy
l'd7 = T’ ‘17= _ ay ■

(17)

(18)

(23)
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Fig. 11. Collective ring-exchange processes in which a set of L electrons simultaneously rotate so that 
each moving electron finally occupies the initial position of its moving nearest neighbor. Contributions 
from different rings add in phase only for the Landau-level filling factor v = p/q, where p and q are 

integers.

Then, Z is approximately given by the sum over external classical paths c:

z= !>[«'] exp{-S[/r]}, (24)
c

where D is the fluctuation determinant arising from fluctuations quadratic in 8RC 
about each path. As is well known, tunneling processes are often well treated by 
such an approximation.

Using the above procedure, KKAS find an important set of paths are those in 
which a ring of L electrons tunnels from an initial configuration R to a final 
configuration Rf with R^=R°/ + } or R^_lt corresponding to a clockwise or coun
terclockwise rotation of the ring, as illustrated in fig. 11. In this path, all tunneling 
electrons move simultaneously, staying out of each other’s way as well as away from 
non-moving electrons. This path is in contrast to a sequence of conventional 
pairwise exchange processes in which electrons must surmount high Coulomb 
barriers produced by non-moving electrons. Thus, while ring exchange via pairwise 
exchange processes is very weak for interesting values of v, the above collective ring 
exchange processes is considerably stronger, e.g. by a factor on the order of 104-105 
even for a ring containing three electrons, for v =

For a large number of particles L in a ring of area A, one finds the contribution 
to Z in time dT is

ZLA = To_1 dT exp[ —a(v)L + ihNA + O(ln L)], (25)

where a(r) is the tunneling exponent per particle, h = tt(v~a — 1) and NA = vA/ttIq 

is the number of Wigner-lattice unit cells contained in area A. The term in h 
gives the flux contribution to the phase while the factor — 1 accounts for the Pauli 
principle factor for even and odd L loops, since L and NA are both even or both 
odd for a triangular lattice. Calculations show a (|) — 0.81.

While the contribution of large L rings is essential to obtain cusps, it might 
appear that large L is exponentially suppressed due to the tunneling factor c~aL. 
However, path counting shows that the number of closed paths of length L varies as 
eK¿ so that aside from the phase question, the sum over rings would become large 
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for a (r) < K, i.e. when V increases to the point where the tunneling is sufficiently 
probable that “path entropy” dominates “path energy”. Thus, we expect nonana- 
lytic structure in E0(v) when rings add in phase on the average and in addition v is 
larger than a critical density vc, such that a(rc) = k.

The ring summation is conveniently carried out by mapping the problem onto the 
discrete Gaussian spin model [28]:

HDO = a £ (sA-$T)2 + i/>lX,
(A.y) X

(26)

in an imaginary magnetic field h. As illustrated in fig. 12, the spins live on the 
dual lattice, where is defined as the number of clockwise minus the number of 
counterclockwise collective exchange-rings encircling the dual lattice point Ä during 
the time interval t0 centered at time r. It is helpful to think of the rings as domain 
boundaries separating regions having different values of S\. For v << 1, a is large 
and the ring density is low. In this case rings rarely overlap. However for larger v, a 
decreases (tunneling increases) and the ring density increases. Since two rings 
cannot share a common edge during one time slice t0, a ring repulsion must be 
included. The (S\ — Sy)2 factor leads to such a repulsion since by crossing two 
separated boundaries one would obtain a factor of l2 + l2 = 2 in the energy while 
crossing a double boundary leads to 22 = 4. While a power higher than 2 in eq. (26) 
might be preferable, the results are likely to be insensitive to this change.

From studies of the discrete Gaussian model [28] and related models [29], it is 
believed that E0(v) has cusps of the form | 8h |ln(27r/| 8h |) or | 8v |In | 8v | at all 
rational h/Zir for a(r) < ac[/z(r)]. Estimates of a lead to cusps at densities v =

5, 7, I, 7 and % although some phases may be unstable with respect to competing 
phases. By charge-conjugation symmetry, cusps are also expected at the conjugate 
densities 1 — v. We note that the crystal lattice approach produces the higher-order 
plateaus, e.g. j, 7, 7, without constructing a Haldane-Halperin hierarchy.

Finally, we turn to quasi-particle excitations in the collective ring-exchange 
scheme. As discussed above, the apparent reason for the plateaus in oxv(v) at 

Fig. 12. The dual lattice for the pseudo-spins on to which the cooperative ring-exchange problem is 
mapped. The walls between domains having different spin orientation are the ring-exchange paths of the 

original problem.
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fractional r, is the stability of the condensate for these particular densities. That is, 
there exists an energy gap for adding or subtracting charge about each fractional v¡ 
such that a (^)<«c [/z(p)J. To understand how such a gap comes about consider a 
uniform compression of the density, about a cusp at vx. The elastic modulus

so that the crystal is incompressible at the cusp. However, suppose we thread a 
point flux tube <p through the plane, say at a point Zo on the dual lattice. As in 
Laughlin’s approach, this singular gauge transformation “blows a hole” in the 
electron density near Zo with charge being transported to the sample boundary. 
Direct calculation shows that the charge transport to the boundary is ve for <p = <p0, 
the Dirac flux quantum. Furthermore, the quasi-particle charge is localized within 
the magnetic unit cell of size ~ /0 at Zo. For the opposite sign of <p, the electron 
density accumulates near Zo to form a quasi-particle of charge — ve.

A question remains: why choose <p = ±<p0? It is readily seen that if <p is not an 
integer multiple of <p0, cooperative exchange rings encircling Zo will have phases 
which do not add coherently near the cusp densities v¡. Therefore there will be a 
discontinuous energy increase as <p deviates from + <p0. It is this phenomenon which 
leads to quantization of the fractional charge in this scheme. An estimate [7] of the 
quasi-particle energy is Ú = Eqp(v) ~ 0.5 v2e2/el0.

As in other descriptions, the plateaus of oxv(v) presumably arise from added 
density 8v, occupying localized defect states inside the gap — A < E < A.

8. Conclusion
While quantum mechanics tells us that accurate observations of an isolated elemen
tary particle will always produce integer charge, excitations in systems or fields of 
integer charge can carry sharp fractional charge Q. The fractional part of Q 
generally arises from flow of charge in the vacuum, without producing added 
excitations. Thus, it is the negative-energy states which are deformed, not the 
occupation numbers which are changed, when fractional charge is formed. The 
sharp quantization of Q can arise from either a discretely degenerate broken 
symmetry vacuum, as in one-dimensional conductors or in field theoretic models, or 
by local energy constraints coupled with incompressible flow of vacuum charge to 
the boundaries, as in the fractional quantum Hall effect.

While direct observation of an isolated fractional charge in a medium remains for 
the future, strong evidence exists for the effects discussed above in quasi one-dimen
sional conductors such as (CH)X.

I hope these ideas would have pleased Niels Bohr.

Acknowledgements
The author would like to acknowledge the hospitality of the Niels Bohr Institute on 
the occasion of the Niels Bohr Centenary and the support of the National Science 
Foundation Grant no. DMR82-16285.



Strange Quantum Numbers 77

References

[1] R. Jackiw and C. Rebbi, Phys. Rev. D13 (1976) 3398.
[2] W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett. 42 (1979) 1698; Phys. Rev. B22 (1980) 

2099.
[3] R. Jackiw and J.R. Schrieffer, Nucl. Phys. B190 (1981) 253.
[4] K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45 (1980) 494.
[5] D.C. Tsui, H.L. Stormer and A.C. Gossard, Phys. Rev. B25 (1982) 1405.
[6] R.B. Laughlin, Phys. Rev. Lett. B23 (1981) 5632.
[7] S. Kivelson, C. Kallin, D. Arovas and J.R. Schrieffer, Phys. Rev. Lett. 56 (1986) 873.
[8] W.P. Su and J.R. Schrieffer, Phys. Rev. Lett. 46 (1981) 738.
[9] For a review of solitons and fractional charge in quasi one-dimensional conductors, see Highlights of 

Condensed Matter Theory, Int. School of Physics, Enrico Fermi, Course LXXXIX eds F. Bassani, F. 
Fermi and M.P. Tozzi (North-Holland, Amsterdam, 1985) p. 300.

[10] R.E. Peierls, Quantum Theory of Solids (London, 1955) p. 108.
[11] W.P. Su and J.R. Schrieffer, Proc. Nat. Acad. Sei (USA) 77 (1980) 5626.
[12] D.K. Campbell, A.R. Bishop and K. Fesser, Phys. Rev. B26 (1982) 6862.
[13] H. Takayama, Y.R. Lin-Liu and K. Maki, Phys. Rev. B21 (1980) 2388.
[14] A.J. Heeger, Philos. Trans. Soc. London A314 (1985) 17.
[15] S. Kivelson, in: Solitons, Modern Problems in Condensed Matter Sciences, Vol. 17, eds V.E. 

Zakharov, V.L. Pokrovskii and S.E. Trullinger (North-Holland, Amsterdam, 1986) ch. 6.
[16] W.P. Su, Handbook on Conducting Polymers, ed. T. Skotheim, (Marcel Dekker, New York, 1985).
[17] S. Kivelson and J.R. Schrieffer, Phys. Rev. B24 (1982) 6447;

J.S. Bell and R. Rajaraman, Phys. Lett. 116B (1982) 151.
[18] H. Thomann, L.R. Dalton, Y. Tomkiewicz and N.S. Shiren, Phys. Rev. Lett. 50 (1983) 533.
[19] A.J. Heeger and J.R. Schrieffer, Solid. State Commun. 48 (1983) 207.
[20] T. Ando, Y. Matsumoto and Y. Uemmura, J. Phys. Soc. Jpn 39 (1975) 279.
[21] F.D.M. Haldane, Phys. Rev. Lett. 51 (1983) 605.
[22] B.I. Halperin, Phys. Rev. Lett. 62 (1984) 1583.
[23] D. Arovas, J.R. Schrieffer and F. Wilczek, Phys. Rev. Lett. 53 (1984) 722.
[24] N.V. Berry, Proc. Soc. London Ser. A392 (1984) 45.
[25] B. Simon, Phys. Rev. Lett. 51 (1983) 2167.
[26] D. Arovas, J.R. Schrieffer, F. Wilczek, A. Zee, Nucl. Phys. B250 [FS13] (1985) 117.
[27] K. Maki and X. Zotos, Phys. Rev. B28 (1983) 4349.
[28] S.T. Chui and J.D. Weeks, Phys. Rev. B14 (1976) 4978.
[29] W.Y. Shih and D. Stroud, Phys. Rev. B32 (1985) 158.

Discussion, session chairman W. Kohn

Anderson1. Is it obvious to you that the two representations of the fractional 
quantum Hall effect state, namely that of Laughlin and of KKAS are different? Or 
do they describe the same state in different ways?

Schrieffer'. At present we have not been able to find a direct link between these two 
candidates for the ground state. Laughlin’s is based on a fluid state while KKAS 
starts with a Wigner-crystal state. Thus, if one calculates the density correlation
function for the two states one would expect to find strong crystalline order, at least 
for short-range correlations in KKAS but not in the Laughlin fluid phase. Collective 
ring exchange weakens the crystallinity and long-wavelength fluctuation will smear 
out long-range crystalline behaviour.
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Kohn: In your lecture you did not mention the fact that, associated with the 
quantum Hall effect, there is the occurrence of essentially vanishing resistance. Can 
you comment on this aspect of the quantum Hall effect within the framework of 
your theory?

Schrieffer'. We are in the midst of attempting to understand this problem. In 
essence, the cusp nature of the energy leads to the incompressibility of the system at 
the densities This in turn apparently produces a gap in the collective excitation 
spectrum, leading to activated resistance, as is observed.

Kohn'. What about the effect of imperfections?

Schrieffer-. We have not put these effects in at present. We believe it will turn out 
that, like in superconductors, the flow simply adjusts to the impurity and goes 
around it.


